ALGEBRA

- 1. Express $x^2 6x + 5$ in the form $p + (x r)^2$ and hence deduce the coordinates of the turning points of $\frac{32}{x^2 6x + 5}$ and state the equation of the line of symmetry.
- 2. If the sum of roots of the equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, show that $ab^2 + bc^2 = 2a^2c$.
- 3. Given that $(x+1)^2$ is a factor of the polynomial $2x^4 + 7x^3 + px^2 + qx + r$ and has a remainder of 14 when divided by (x-1), find the values of p, q, r.
- 4. Given a G.P a+b+...+l prove that its sum is $S_n = \frac{bl-a^2}{b-a}$.
- 5. Given that the equations $x^2 + px + q = 0$ and $x^2 + mx + k = 0$ have a common root, show that $(q k)^2 = (m p)(pk mq)$.
- 6. Given that one root of the equation $x^2 + px + q = 0$ is twice the other, show that $2p^2 = 9q$, hence, find the values of k, if the equation $x^2 2(k+2)x + (k^2 + 3k + 2) = 0$, has one root twice the other.
- 7. If $\log_a a^3 b = u$ and $\log_a ab^2 = v$, find a in terms of e, u and v.
- 8. Solve the equation: $\log_{10} e \ln(x^2 + 1) 2\log_{10} e \ln x = \log_{10} 5$
- 9. Prove by mathematical induction that for all positive integral values of n, $10^n + 3(4^{n+2}) + 5$ is a multiple of 9.
- 10i) Prove that the curve $y = \frac{4x^2 10x + 7}{(x 1)(x 2)}$ cannot lie in the region $-2\sqrt{3}$ and $2\sqrt{3}$.
- ii) Solve the inequality: $\frac{x+1}{2x-3} \le \frac{1}{x-3}$
- 11. The sum of the first n terms of an A.P is $n^2 + 5n$. Find the first three terms of the series.

- 12. The first term of a geometric progression is A and the sum of the first three terms is $\frac{7}{4}A$.
 - i) Show that there are two possible progressions.
 - ii) Given that A = 4 find the next two terms of each progression.
- 13. Expand $\frac{1}{\sqrt{1+x}}$ up to the term in x^2 and by letting $x = \frac{1}{4}$, show that $\sqrt{5} \approx \frac{256}{115}$.
- 14. Express $(-1-\sqrt{3}i)^6$ in the form x+iy.
- 15. Describe the locus represented by 2|z-2i|=3|z+1| and hence state the centre and radius.
- 16. If $\frac{(z-i)}{(z-1)}$ is purely imaginary, show that the locus of z is a circle. State the centre and radius.
- 17. Given $z = 1 + \cos 4\theta + i \sin 4\theta$, find the modulus and argument of z.
- 18. Solve for *n* given that ${}^{n}C_{4} = 5 \times {}^{n-2}C_{3}$.
- 19. Find the square root of 5 + 12i.
- 20. If x is sufficiently small the allow any terms in x^5 or higher powers of x to be neglected, show that $(1+x)^6(1-2x^3)^{10} \cong 1+6x+15x^2-105x^4$.

ANALYSIS

- 21. Evaluate: $\int_{-1}^{-1/2} \frac{(4x+2)}{(x-1)^4(x+2)^4} dx$
- 22. Use small changes to show that $(16.02)^{\frac{1}{4}} \approx 2 \frac{1}{1600}$
- 23. Use $t = \tan \frac{1}{2}x$, to find the value of $\int_0^{\frac{\pi}{2}} \frac{dx}{3 + 5\cos x}$

- 24. Sketch the curve $y = \frac{4 + 3x x^2}{x 8}$, clearly find the nature of the turning points and state their asymptotes.
- 25. An open cylindrical container is made from a $12cm^2$ metal sheet. Show that the maximum volume of the container is $\frac{8}{\sqrt{\pi}}cm^3$.
- 26. The area enclosed between the parts of the curves $x^2 + y^2 = 1$ and $4x^2 + y^2 = 4$ for which y is positive is rotated about the x axis, find the volume of the solid generated.
- 27. Evaluate: $\int_{1}^{2} (x-1)^{2} \ln x \, dx$
- 28. Find Maclaurin's expansion of $y = In \frac{(2-x)^2}{(1+x)^2}$, showing the first three non zero terms, hence, find the approximate value of $2In \frac{1.99}{1.01}$ correct to 3 s.f.
- 29. Integrate $\int \frac{4x^2 + x + 1}{(x^3 1)} dx$
- 30. Find the area enclosed by the curves $y^2 = 4x$ and $x^2 = 4y$.
- 31. Evaluate: $\int_0^{\frac{1}{4}} \cos^{-1} 2x \, dx$
- 32. Find the equation of the tangent at the point (1, -1) to the curve $y = 2 4x^2 + x^3$. What are the coordinates of the point where the tangent meets the curve again? Find the equation of the tangent at this point.
- 33. If $y = \tan\left(2\tan^{-1}\frac{x}{2}\right)$, show that $\frac{dy}{dx} = \frac{4(1+y^2)}{4+x^2}$
- 34. Differentiate from first principles: $y = \sqrt{\cos x}$ from first principles.
- 35. A particle is moving in a straight line such that its distance from a fixed point O, ts after motion begins is $s = \cos t + \cos 2t$ m, find:

- i) the time when the particle first passes through O.
- ii) the velocity of the particle at this instant.
- iii) the acceleration when the velocity is zero.
- 36. Given $\frac{dy}{dx} = 2\cos x\sqrt{y+3}$, find y in terms of x if $y\left(\frac{\pi}{2}\right) = 1$.
- 37. Solve the d.e $2y(x+1)\frac{dy}{dx} = 4 + y^2$, given that y = 2 when x = 3 express y in terms of x.
- 38. The price p of a commodity varies in such a way that the rate of change of price with respect to time t hours is proportional to the shortage D-S, where D=8-2p and S=2+p. If the price at t=0 is \$5 and after t=2 hours the price is \$3. Find the price of the commodity at any time and determine the price of the commodity as time tends to infinity.
- 39. Show that $\int_{1}^{2} \frac{2x^{3} 1}{x^{2}(2x 1)} dx = \frac{3}{2} + \frac{1}{2} \ln \left(\frac{16}{27} \right)$

TRIGONOMETRY

- 40. Prove that $(\sin 2\alpha \sin 2\beta)\tan(\alpha + \beta) = 2(\sin^2 \alpha \sin^2 \beta)$.
- 41. Given $\sin(x+\alpha) = 2\cos(x-\alpha)$, prove that $\tan x = \frac{2-\tan \alpha}{1-2\tan \alpha}$
- 42. Solve: $\cos(2\theta + 45^{\circ}) \cos(2\theta 45^{\circ}) = 1$, for $0^{\circ} \le \theta \le 360^{\circ}$.
- 43. Prove the identity: $\cos^6 x + \sin^6 x = 1 \frac{3}{4}\sin^2 2x$.
- 44. The roots of the equation $ax^2 + bx + c = 0$ are $\tan \alpha$ and $\tan \beta$. Express $\sec(\alpha + \beta)$ in terms of a, b, c.
- 45. If $a = x\cos\theta + y\sin\theta$ and $b = x\sin\theta y\cos\theta$, prove that $\tan\theta = \frac{bx + ay}{ax by}$.
- 46. Solve: $3\tan^3 x 3\tan^2 x = \tan x 1$ for $0^\circ \le x \le \pi$.

- 47. Prove that $\cos^5 x = \frac{\cos 5x + 5\cos 3x + 10\cos x}{16}$.
- 48. Find the values of p and θ , given that $\cos(p+2)\theta + \cos p\theta = \cos\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- 49. Express $10\sin x \cos x + 12\cos 2x$ in the form $R\sin(2x + \alpha)$, hence or otherwise solve $10\sin x \cos x + 12\cos 2x + 7 = 0$ in the range $0^{\circ} \le x \le 360^{\circ}$.
- 50. Prove that: $\cos^2 2A + \cos^2 2B + \cos^2 2C 1 = 2\cos 2A\cos 2B\cos 2C$.

GEOMETRY

- 51. The equation of a circle is given by $x^2 + y^2 + Ax + By + C = 0$, where A, B, C are constants, given that 8A = 6B, 6A = 4C and C = 18, find the coordinates of the centre and the radius.
- 52. Prove that the line 2x-3y+26=0 is a tangent to the circle $x^2+y^2-4x+6y-104=0$ and hence find the coordinates of the point of intersection.
- 53. Prove that the circles $x^2 + y^2 6x 12y + 40 = 0$ and $x^2 + y^2 4y = 16$ are orthogonal.
- 54. A point P on the curve is given parametrically by $x = 3 \cos\theta$ and $y = 2 + \sec\theta$. Find the: (i) equation of the normal to the curve at the point $\theta = \frac{\pi}{3}$
 - (ii) Cartesian equation of the curve.
- (b) Point $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ lie on the parabola $y^2 = 4ax$. Find the locus of the midpoint of the chord PQ for which pq = 2a.
- 55. Find the equation of the normal to the curve $y^2 = 4bx$ at the point $P(bp^2, 2bp)$. Given that the normal meets the curve again at $Q(bq^2, 2bq)$, prove that $p^2 + pq + 2 = 0$.
- 56. Show that the curve $x = 5 6y + y^2$ represents a parabola and find the directrix and sketch.

- 57. The normal to the parabola $y^2 = 4ax$ at the point $P(at^2, 2at)$ meets the axis of the parabola at G and GP is produced, beyond P to Q so that $\overline{GP} = \overline{PQ}$. Show that the equation of locus of Q is $y^2 = 16a(x + 2a)$.
- 58. The points $P\left(5p, \frac{5}{p}\right)$ and $Q\left(5q, \frac{5}{q}\right)$ lie on the rectangular hyperbola xy = 25.
- i) Find the equation of the tangent at P and hence deduce the equation of the tangent at Q.
- ii) The tangents at P and Q meet at point N, show that the coordinates of N are $\left(\frac{10pq}{p+q}, \frac{10}{p+q}\right)$.

VECTORS

- 59i) Show that the point with position vector $\mathbf{i} 9\mathbf{j} + \mathbf{k}$ lies on the line $\mathbf{r} = 3\mathbf{i} + 3\mathbf{j} \mathbf{k} + \lambda(\mathbf{i} + 6\mathbf{j} \mathbf{k})$.
- ii) Show that the line $\frac{x-2}{2} = \frac{2-y}{1} = \frac{3-z}{-3}$ is parallel to the plane 4x y 4z = 0.
- iii) Find the shortest distance from the point with position vector $4\mathbf{i} 3\mathbf{j} + 10\mathbf{k}$ to the line $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(3\mathbf{i} \mathbf{j} + 2\mathbf{k})$.
- 60i) A line passes through the mid point of A(4, 3, 2) and B(6, 2, 1). This line is parallel to the plane 6x + 3y + 9z = 11. Find the equation of the line.
- ii) A line passes through the point P(1, -3, -4) and is perpendicular to the plane -4x+3y+6z=10. If this line meets another plane 6x+8y+4z=11, find the point of intersection.
- 61. Two lines have vector equations $\mathbf{r} = 3\mathbf{i} \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} \mathbf{k})$ and $\mathbf{r} = (4 \beta)\mathbf{i} + (\beta + 4)\mathbf{j} + (1 + 2\beta)\mathbf{k}$. Find the position vector of the point of intersection of the two lines and the Cartesian equation of the plane containing the two lines.

- 62. A plane, P_1 passing through the point A(1, 1, -3) is perpendicular to the line $\frac{x}{2} = \frac{1-y}{3} = \frac{z-3}{2}$. Another plane, P_2 contains the points with position vectors $\mathbf{p} = \mathbf{i} 2\mathbf{j} + 5\mathbf{k}$, $\mathbf{q} = -2\mathbf{i} 4\mathbf{j} + 3\mathbf{k}$ and $\mathbf{r} = 7\mathbf{i} + 3\mathbf{j} 8\mathbf{k}$. Find
 - (i) The Cartesian equations of the two planes.
 - (ii) The angle between the two planes.
 - (iii) The line of intersection of the two planes.
- 63. The position vectors of points A and B are **a** and **b** respectively. The point C is such that BC = a. Another point D on BC produced is such that AC intersects **OD** at T and OT: OD = 2:3 with respect to the origin O.
- a) Find in terms of **a** and **b**, the position vectors of (i) **BT** (ii) **TD.**
- b) If a = 15i + 12j + 18k and b = -10i + 16j + 6k find to the nearest degree, the angle between **BT** and **TD**. Hence, find the area of triangle BTD.
- 64a) Find the equation of the plane that is perpendicular to line AB, and contains the point P, such that AP:PB=2:1, given that A(1,0,-5) and B(7,6,7).
- b) The L_1 passes through the point P(2,0,-4) and is parallel to the line $r = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, Determine
- i) the position vector of F, the point of intersection of the plane in (a) above and the line L_1
- ii) The shortest distance between P(2,0,-4) and the plane in (a).
- iii) $\tan \theta$ where θ is the angle between the line L_1 and the plane in (a).
- 65a) Find the equation of the plane containing the lines $\frac{x-2}{2} = \frac{y+3}{3} = \frac{z-1}{5}$ and $r = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 8 \\ 12 \\ 20 \end{pmatrix}$.
- b) Find the point of intersection of the line $\frac{x-2}{2} = \frac{y+3}{3} = \frac{z-1}{5}$ and the line given by the equation $\mathbf{r} = (4+2t)\mathbf{i} + (8-5t)\mathbf{j} + (7+4t)\mathbf{k}$.
 - ii) Determine the angle between the two lines in (b) above. **END**